
Agile Data Science
Agile Alliance Technology Conference

April 2017

Terran Melconian
terran@airnetsim.com

twitter @terranmelconian

Same as Engineering?

• Both involve technical work, writing code, and
interacting with businesspeople!

• Effort usually not foreseeable
• Achievable results usually not foreseeable
• Most work is exploration which is discarded

2

“Data science”?
• Warehousing
• Business Intelligence & Reporting
• Offline Modelling
• Algorithm Development
• Research

• This presentation will motivate guidelines by
following our hapless data protagonist through
numerous bad decisions.

3

Examples for Presentation
• We work at a company which sells lots of distinct

products to consumers or small business.
• Self-service purchase
• Search functionality prominent on site
• Email signup
• Repeat customers

• We thought up two possible projects:
• Spelling Correction on Searches
• Personalized Recommendations

4

Can we ask for priorities?

• Let’s go ask somebody in the business which
project to do.

• They might need some information in order to
decide…
• “How long will it take?” “Sorry, don’t know.”
• “What benefits will it produce?” “Uh….”

• They say: Do whatever will best maximize sales.
• Lesson: Data science projects are fungible.

5

Failure by Success
• I built a state of the art spelling correction system…
• It supports English, French, Italian, German, and

Spanish…
• It includes heuristics for keyboard distance…
• It outperformed the other spelling correction systems

in an online competition…
• It took four months to build and integrate…
• It turns out that 0.3% of our searches involve

misspellings and the revenue is negligible…
• Lesson: Know your best case results and benefits.

6

Estimating Spelling
Correction Benefits

• Do we have a log of what the user typed?
• How do we tell when it’s a mistake?
• How many searches have spelling mistakes?
• What’s the downstream consequence of a

misspelling on sales?
• How many of the mistakes can we correct?
• Result: estimate that spelling correction will make  

$$$$/week in new sales.

7

Implementing Spellcorrect
• OK, I verified my benefits, so NOW I can take

months and build my super-duper spelling
correction system, right?

• Oops! It turns out that 95% of the people who
made spelling mistakes fixed them and did a new
search themselves anyway.

• or… Oops! It turns out that 90% of our spelling
corrections were on mobile and mobile traffic
converts much less than the average we used.

• Lesson: You never fully understand the dynamics.

8

Implementing Intelligently

• What’s the easiest implementation we can possibly
do which will get a measurable fraction of the
result?
• Time to do some stats on what’s measurable…
• Lookup table for most common mistakes?
• Single character correction in our search engine?

• Deploy the minimum viable feature and measure it!

9

Prioritization

• OK, my test worked, so NOW I can finally build my
nice system, right?

• Wrong! Can you get 80% of the benefit in 20% of
the time with the lookup table or another simple
solution?

• We haven’t even started looking at
recommendations, after all!

• Lesson: You have more good ideas than time.

10

Quick Test for Recs

• How can we evaluate the benefits and test as
quickly as possible?
• Unlike spelling, there’s no clear post-hoc assessment.

• Deploy a quick test?
• For popular searches, where there’s plenty of data,

show what people ultimately bought
• Engineering release cycle - could be weeks

• How about those email subscribers?

11

More Recommender Tests

• Verified on email, so now do the engineering.
• Good results on the first test, so now we want to

expand who sees recommendations… go through
the engineering cycle all over again?

• Instead of one fixed implementation, deploy a
system for reading recommendation from a file or
DB which can be updated with a faster process.

• Lesson: Design for fast iteration

12

A/B Tests
• We got great results when we rolled out our

recommender, but it turns out we also introduced a
new product line the same week, so how do we
attribute the gains? Both teams claim credit…

• Longitudinal tests are difficult and ambiguous to
interpret.

• We need to show the recommender to some people
and not to others, who are otherwise identical, to
get clean results.

• Lesson: Need A/B tests, AKA randomized trials.

13

Team Structure

• Who’s going to do the engineering to make the A/B
tests or a recommender?
• Can you do it yourselves? May you do it yourselves?

• Do you have engineers allocated?
• Now you’re the product owners

• None of the above?
• Lesson: Know where your engineering is

14

Implementation Quality
• We wrote this to throw away, but it turns out it

worked. Now what?
• Write it again, better

• Design it for fast iteration

• Reliability and robustness? Think 9s
• How often does it fail?
• What does that failure cost?
• How does reducing that failure cost compare against

the next best project?

15

Managing the Backlog
• Recurring areas: do we work on recommendations

or spelling?
• Now it’s time to record your estimates and compare

against the actual result to calibrate.
• A likely productivity curve:

• Increases at beginning with increasing domain
knowledge and tooling

• Decreases again after best and easiest ideas have
been implemented

• Analogies: A*, multi-armed bandit

16

Opening New Areas
• Would be convenient to start on new areas when

returns diminish on existing projects
• Context switching has costs

• Collecting new data has a long lead time
• Need to start collecting well in advance

• Adding new features will have business and product
interactions

• Manage a pool of exploitable domains
• Kanban-style

17

Other Business Goals

• Special projects
• “We’re now also selling things for partners. Figure out

where to show them to maximize profit while keeping
our partners happy.”

• Strategic goal changes
• “This quarter, we care about time on site and number

of page views in addition to profit.”

18

Software Testing &
Maintenance

• Data validation
• Do we have the right amount?
• Are certain cases for which we KNOW we should

have data covered?
• Does the data pass some sanity tests (smoke tests)?

• Holdbacks
• Keep 1% to 10% of users/arrivals/etc permanently out

of the feature.
• When rolled out, it produced X% profit lift. Does it still

produce that compared to the baseline?

19

Summary of Lessons (1)

• The team should get the desired result(s) from the
business, and then choose the most effective path.

• Estimate your best case outcome at each stage,
using what you have measured and learned.

• Proceed incrementally, doing the minimum possible
work to observe the next set of unknowns.

20

Summary of Lessons (2)

• After each step, be willing to say “good enough” or
“not worth it” and prioritize a different project.

• Build for fast iteration.
• Demand an A/B test (controlled trial) framework.
• Engineering work is critical.

21

Questions?
rotten fruit?

terran@airnetsim.com

twitter @terranmelconian

If you’re reading an archive of this presentation,
I’m happy answer questions by email.

