
Debugging Complex Systems

Terran Melconian
Velocity New York
October 4, 2017

terran@airnetsim.com twitter @terranmelconian

@terranmelconian

• Aeronautics
• Electronics
• Development
• Operations
• Data science
• Grey beard

2

Hi!

@terranmelconian

What’s Complex?

• Multiple interacting components
• Emergent behavior

• Dynamics occur which were not intentionally
designed in

• Usually larger than a single piece of
software on a single host

3

@terranmelconian

Incident Response

Temporary
Mitigation

Diagnosis

Project
Management

External
Communication This Talk

4

@terranmelconian

Applicability

• To any system which once worked or
sometimes works and then does not

• Which has been or can be observed and
measured in both states

5

@terranmelconian

• Question beliefs
• You believed the system worked. It doesn’t.
• Your other beliefs are not magically better.

• Divide the problem space
• Binary search beats linear search

• Fast measurements first
• Look up a measurement we have: 5 min
• Write, review, deploy, wait for peak: 24+ hours

Core Principles

6

@terranmelconian

Teaching the Skill

• Uncorrelated with software development
• Contrast actual states - avoid distracting

contrasts with idealized “shoulds”
• smallest set of changes to reproduce

• Enforce shared, written records and
diagrams

• Practice in advance of critical failures

7

@terranmelconian

Domains
• Computer systems
• Your car
• Health
• Leaks in your house

• Almost any kind of
system which used to
work

8

@terranmelconian

Start with Symptom

• Errors
• Slow Response Time
• Server crash
• GC hell
• Bad data

9

@terranmelconian

Mechanism

• Draw a tree of possible causality
• Rooted at symptom
• Possible causes point to root
• Causes of those causes and so on

• Take organized data samples
• Add columns as you expand your analysis

10

@terranmelconian

Example: GC Hell

GC Hell

Gradual
Overload

Killer
Request

WTF?

11

@terranmelconian

GC Hell Data
Time GC CPU %

13:46
(failure) 100%

13:40 3%

13:00 4%

12:00 3%

Time GC CPU %

13:46
(failure) 100%

13:40 92%

13:00 34%

12:00 3%

12

@terranmelconian

GC Hell Step 2

GC Hell

Gradual
Overload

Killer
Request

WTF?

Slower
Response

More
Requests

WTF?

13

@terranmelconian

Step 2 Data

Time GC CPU % Response
Time

13:46
(failure) 100% 16423 ms

13:40 92% 2473 ms

13:00 34% 844 ms

12:00 3% 192 msGC Hell

Gradual
Overload

Killer
Request

WTF?

Slower
Response

More
Requests

WTF?

14

@terranmelconian

GC Hell Step 2 bis

GC Hell

Gradual
Overload

Killer
Request

WTF?

Slower
Response

More
Requests

WTF?

15

@terranmelconian

Step 2 Data bis
Time GC CPU % Response

Time Req/Min

13:46
(failure) 100% 16423 ms 3

13:40 92% 2473 ms 352

13:00 34% 844 ms 1630

12:00 3% 192 ms 850

16

@terranmelconian

Bad
Balance

GC Hell Step 3

GC Hell

Gradual
Overload

Killer
Request

WTF?

Slower
Response

More
Requests

WTF?

More
Users

WTF?

17

@terranmelconian

Step 3 Data
Server A Server B

Time GC CPU % Response
Time Req/Min GC CPU % Response

Time Req/Min

13:46
(failure) 100% 16423 ms 3 15% 302 ms 1250

13:40 92% 2473 ms 352 3% 240 ms 1002

13:00 34% 844 ms 1630 4% 180 ms 702

12:00 3% 192 ms 850 3% 201 ms 842

18

@terranmelconian19

GC Hell Step 4

Bad
Balance

GC Hell

Gradual
Overload

Killer
Request

Slower
Response

More
Requests

WTF?

More
Users

WTF?

Uneven balance at other
times?

Uneven balance across
other servers?

@terranmelconian

Anti-Example 1

GC Hell

Add More
Servers

Change
Garbage
Collector

20

Add a Rate
Limit

@terranmelconian

Anti-Example 2

GC Hell

L1 Cache

That new
feature from

Thursday

21

Maybe bad
data?

@terranmelconian

Anti-Example 3

GC Hell

Slowdown

Crash

22

Network
Failure

@terranmelconian

Partitioning
• Do

• By system component
• By service
• By time of checkin/deployment

• beware, blind to causes which are not a code change

• Don’t
• By ways to mitigate
• By listing individual pieces of code
• By ignoring the information in the symptoms

23

@terranmelconian

Extensions
• Weight the tree by prior beliefs and partition

weight instead of node count
• Default first steps such as rolling back release
• but limit your temptation to repeatedly pursue

high-confidence guesses
• disagreements over weight more likely

• Give tree and process to others for diagnosis
• Plan your logging and dashboards

24

@terranmelconian

Summary

• Start with a symptom
• Draw a tree of possible causes
• Take measurements to partition the tree
• Prefer observing to mutating and waiting
• Record all your data in one place
• Suspect everything you believe

25

Questions?

terran@airnetsim.com twitter @terranmelconian

slides: from O’Reilly site or http://www.airnetsim.com/terran/

